The fast multipole boundary element method for potential problems: A tutorial

نویسندگان

  • Y. J. Liu
  • N. Nishimura
چکیده

The fast multipole method (FMM) has been regarded as one of the top 10 algorithms in scientific computing that were developed in the 20th century. Combined with the FMM, the boundary element method (BEM) can now solve large-scale problems with several million degrees of freedom on a desktop computer within hours. This opened up a wide range of applications for the BEM that has been hindered for many years by the lack of efficiencies in the solution process, although it has been regarded as superb in the modeling stage. However, understanding the fast multipole BEM is even more difficult as compared with the conventional BEM, because of the added complexities and different approaches in both FMM formulations and implementations. This paper is an introduction to the fast multipole BEM for potential problems, which is aimed to overcome this hurdle for people who are familiar with the conventional BEM and want to learn and adopt the fast multipole approach. The basic concept and main procedures in the FMM for solving boundary integral equations are described in detail using the 2D potential problem as an example. The structure of a fast multipole BEM program is presented and the source code is also made available that can help the development of fast multipole BEM codes for solving other problems. Numerical examples are presented to further demonstrate the efficiency, accuracy and potentials of the fast multipole BEM for solving large-scale problems. q 2006 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Multipole Boundary Element Method of Potential Problems

In order to overcome the difficulties of low computational efficiency and high memory requirement in the conventional boundary element method for solving large-scale potential problems, a fast multipole boundary element method for the problems of Laplace equation is presented. through the multipole expansion and local expansion for the basic solution of the kernel function of the Laplace equati...

متن کامل

A new fast multipole boundary element method for solving large-scale two-dimensional elastostatic problems

A new fast multipole boundary element method (BEM) is presented in this paper for large-scale analysis of two-dimensional (2-D) elastostatic problems based on the direct boundary integral equation (BIE) formulation. In this new formulation, the fundamental solution for 2-D elasticity is written in a complex form using the two complex potential functions in 2-D elasticity. In this way, the multi...

متن کامل

Research on Potential Problem based on Singular Decomposition and Boundary FM-BEM Algorithm

In order to overcome the difficulties of low computational efficiency and high memory requirement in the conventional boundary element method for solving large-scale potential problems, a fast multipole boundary element method for the problems of Poisson equation is presented. First of all, through the multipole expansion and local expansion for the basic solution of the kernel function of the ...

متن کامل

The fast multipole method for the symmetric boundary integral formulation

A symmetric Galerkin boundary-element method is used for the solution of boundary-value problems with mixed boundary conditions of Dirichlet and Neumann type. As a model problem we consider the Laplace equation. When an iterative scheme is employed for solving the resulting linear system, the discrete boundary integral operators are realized by the fast multipole method. While the single-layer ...

متن کامل

A New Adaptive Algorithm for the Fast Multipole Boundary Element Method

A new definition of the interaction list in the fast multipole method (FMM) is introduced in this paper, which can reduce the moment-to-local (M2L) translations by about 30-40% and therefore improve the efficiency for the FMM. In addition, an adaptive tree structure is investigated, which is potentially more efficient than the oct-tree structure for thin and slender domains as in the case of mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005